

 This project has received funding from the European Union’s Horizon

2020 Research and Innovation Programme under Grant Agreement No

857188.

PILOTS FOR HEALTHY AND ACTIVE AGEING

Grant Agreement: 857188

D4.4 Service orchestration support tools - first

Ref. Ares(2021)2243099 - 31/03/2021

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

2

Document Information

Deliverable number: D4.4

Deliverable title: Service orchestration support tools - first

Deliverable version: 0.8

Work Package number: WP4

Work Package title: Technology Support Tools

Due Date of delivery: M16 (March 2021)

Actual date of delivery: M16 (March 2021)

Dissemination level: Public (PU)

Type Other (O)

Editor(s): Andrej Grgurić (ENT)

Contributor(s): Andrej Grgurić (ENT)

Danny Pape (ASC)

Reviewer(s): Miran Mošmondor (ENT)

Rafael Maestre Ferriz (CETEM)

Miguel Ángel Beteta (CETEM)

Project name: Pilots for Healthy and Active Ageing

Project Acronym PHArA-ON

Project starting date: 01/12/2019

Project duration: 48 months

Rights: PHArA-ON Consortium

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

3

Document history

Version Date Beneficiary Description

0.1 26.10.2020 ENT Table of Contents proposal and initial content considerations
for each chapter

0.2 15.02.2021 ENT Service orchestration in Pharaon, OpenAPI in Pharaon,
Containers orchestration and applicability in Pharaon.
Document introductory chapters.

0.3 18.02.2021 ASC Monitoring orchestration in Pharaon

0.4 08.03.2021 ENT Overall quality improvements. REST APIs and related
description languages chapters added. Policies-based control
and OPA consideration for Pharaon.

0.5 16.03.2021 ENT Service orchestration chapter update. Updates based on
internal review. Progress beyond state-of-the-art chapter
content added.

0.6 29.03.2021 ENT Abbreviations chapter update. Benefits of OPA in Pharaon and
Using OPA with Docker chapters added.

0.7 30.03.2021 ENT Internal review updates

0.8 31.03.2021 ENT Wrapping up the document

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

4

PM efforts per beneficiary having contributed to the deliverable.

Partner PM effort in D4.4

28 ENT 1.5

29 ASC 0.4

7 CETEM 0.2

TOT Pharaon Consortium 2.1

Acknowledgement: This project has received funding
from the European Union's Horizon 2020 Research
and Innovation Programme under Grant Agreement
No 857188.

Disclaimer: The content of this publication is the sole
responsibility of the authors, and in no way
represents the view of the European Commission or
its services.

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

5

Executive Summary

This deliverable reports on the work carried out within the tasks of the fourth work package (WP4) of

the PHArA-ON (in further text "Pharaon") project.

The focus of the work reported in this deliverable is to report on the initial work done regarding

technology support tools with respect to service orchestration.

Giving that the Pharaon system architecture is being defined in parallel and that WP5 work has been

delayed, the scope of this deliverable is reduced (considering initial project planning in September

2020) and the efforts planned in this task will be minimal in this first deliverable iteration, thus

preserving the resources for the next phase when concrete needs and priorities will be clearer and

effort spending more effective.

Progress beyond the state of the art and play

This document reports on the initial in-depth analysis of the selected tools related to the process of

service orchestration within Pharaon. After the specifics of both the realization and the deployment of

the Pharaon input technologies became more apparent, as well as with the definition of Pharaon

reference architecture and the work on concrete architectures of Pharaon pilots, additional

information crucial for this task became known. One such piece of information is that the input

technologies during the work in WP3 will be hosted by each partner separately. In general, only the

APIs are to be exposed for the integration. While this is being done in parallel with the activities

reported in this document, the following steps will inevitably have to include WP5 planning to provide

the best possible project value. Having this in mind, this document reports on the common ("best")

and state-of-the-art processes, in-depth analysis of the selected and prioritized tools, and initial

concrete work to be used as a lighthouse example for future activities (e.g., adopting and making

available the interactive REST API (REpresentational State Transfer Application Programming

Interface) documentation based on the most popular OpenAPI specification).

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

6

Contents

Executive Summary ... 5

Progress beyond the state of the art and play .. 5

Acronyms & Abbreviations .. 8

1 Introduction ... 9

1.1 Overview.. 9

1.2 Relation to other tasks and deliverables ... 9

1.3 Structure of the deliverable .. 9

2 Service orchestration in Pharaon .. 10

3 REST API documentation ... 12

3.1 RESTful APIs ... 12

3.2 RESTful APIs description languages ... 12

3.3 OpenAPI Specification ... 13

3.4 OpenAPI tools .. 14

3.5 OpenAPI in Pharaon .. 16

4 Container orchestration tools ... 18

4.1 Containers and container orchestration ... 18

4.2 Kubernetes and Pharaon ... 20

4.3 Docker Swarm and Pharaon .. 21

5 Monitoring Orchestration Tools .. 22

5.1 Data analysis with Prometheus ... 22

5.2 Data Visualisation with Grafana .. 23

5.3 Monitoring and Pharaon ... 24

6 Policy-based control for cloud native environments .. 25

6.1 Open Policy Agent (OPA) ... 25

6.2 OPA and Pharaon .. 25

7 Conclusions .. 29

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

7

Figures

Figure 2.1 Properties of Pharaon APIs ... 11

Figure 3.1 REST API [image taken from Seobility] ... 12

Figure 3.2 State of API 2020 Report .. 13

Figure 3.3 A sample OpenAPI 3.0 definition written in YAML [image from swagger.io] 14

Figure 3.4 OpenAPI specification in YAML (left) and JSON (right) .. 14

Figure 3.5 OpenAPI UI for ThingsBoard (used in Slovenian and Italian pilot) 16

Figure 3.6 OpenAPI UI for SmartHabits (used in Slovenian and Italian pilots)...................................... 17

Figure 4.1 Containers vs. Virtual Machines [image taken from] .. 18

Figure 4.2 Docker architecture [image taken from] ... 19

Figure 4.3 Diagram of a Kubernetes cluster [image taken from official documentation] 20

Figure 5.1: Prometheus architecture [image from] .. 23

Figure 5.2: Grafana example ... 24

Figure 6.1 OPA overview [image from OPA documentation] ... 25

Figure 6.2 OPA policy example for Pharaon .. 26

Figure 6.3 JSON Web Token flow [image from OPA documentation] .. 27

Figure 6.4 OPA decision log [image from OPA documentation] ... 28

Tables

Table 4.1 Using k8s in Pharaon ... 20

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

8

Acronyms & Abbreviations

Term Description

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CPU Central Processing Unit

DevSecOps Development, Security and Operations

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

JSON JavaScript Object Notation

k8s Kubernetes

LDAP/AD Lightweight Directory Access Protocol/Active Directory

OData Open Data Protocol

OPA Open Policy Agent

OS Operating System

PromQL Prometheus Query Language

RAML RESTful API Modeling Language

REST REpresentational State Transfer

RPC Remote Procedure Call

SOAPs Service Orchestrion and Automation Platforms

WADL Web Application Description Language

WP Work Package

WP2 Pharaon WP2 Pilot and User Requirements, Ecosystem Architecture

WP3 Pharaon WP3 Secure Interoperability Solution

WP4 Pharaon WP4 Technology Support Tools

WP5 Pharaon WP5 Technology Ecosystem Integration

WP6 Pharaon WP6 Ecosystem Evolution

WSDL Web Services Description Language

XML Extensible Markup Language

YAML YAML Ain't Markup Language

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

9

1 Introduction

1.1 Overview

Pharaon selected input technologies for each pilot are cataloged within D3.1, where the gap analysis

with relation to requirements coming from each Pharaon pilot is also done in order to identify

customizations to be done. As interoperability is in the focus most obvious and straightforward way of

connecting different platforms and solutions will be via web APIs. For this to be possible, the proper

documentation and web addresses have to be available. Such documentation with possible concrete

adapters or SDKs will be available via Developer Handbook (described in D4.1).

Task T4.2, where this deliverable is the first step, will focus on facilitating the coordination of the

communication between Pharaon services and orchestration as straightforward as possible. Special

attention will be put towards investing efforts to achieve the biggest impact and added value.

Pharaon ecosystem, encompassing several AAL ecosystems realized via different Pharaon pilots, is

defined as a sociotechnical system. When focusing only on the software part residing in the cloud it

can be said that it is a "system of systems".

1.2 Relation to other tasks and deliverables

The main inputs to this deliverable come from WP2 and WP3 activities, in the future also more input

will be collected from WP5.

Apart from the activities from deliverables:

• D2.1 User and pilot requirements

• D2.2 Pharaon initial ecosystems architecture

activities reported in this deliverable are in high correlation to parallel activities in WP3 and WP4

and, more specifically with deliverables (due at the same time, M15):

• D3.1 Interoperability Platforms Descriptions – intermediate (Type: Report)

• D3.3. Semantics and Usability Report – first (Type: Report)

• D3.11 User interoperability layer report – intermediate (Type: Other)

• D4.1 Developer guidelines and templates – first (Type: Other)

1.3 Structure of the deliverable

After the executive summary and acronyms used in the document, an Introduction of the document is

given, including the relation to other project tasks and deliverables.

In chapter 2 service orchestration in relation to Pharaon is elaborated. In chapter 3, OpenAPI as REST

API documentation specification, tools and usage in Pharaon is explained. Chapter 4 elaborates on

containers, container orchestration and gives an analysis of the Kubernetes and Docker Swarm in

relation to Pharaon. Chapter 5 addresses monitoring orchestration tools and chapter 6 elaborates and

analyzes policy-based control in relation with possible use in Pharaon.

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

10

2 Service orchestration in Pharaon

In most definitions of orchestration, the (web) services are in control of a central (web) service which

coordinates their operation. The services can, in this way, be connected without being aware that they

are part of a more extensive (business) process.

Gartner defines Service Orchestrion and Automation Platforms (SOAPs) as a "workload automation

and orchestration tools that enable IT to design and implement business services through a

combination of workflow orchestration, run book automation and resource provisioning across an

organization's hybrid digital infrastructure."1 SOAPs provide orchestration for applications, IT

infrastructure, network services, DevOps, microservices and other use cases with the most common

features and capabilities being:

• Graphical workflow designers for assembling cross-platform processes,

• Monitoring and alerting aiming to reduce mean time to remediation, help improve SLAs,

monitor workloads in real-time, issues alarms, offer actionable insights, analyze historical

system data with ML/AI,

• Resource provisioning across cloud environments according to the need dynamically.

For a Pharaon ecosystem to be aligned when serving the end users, multiple siloed input technologies

have to be integrated. Having this in mind, the Pharaon service orchestration is defined as the

processes, procedures, guidelines, and tools implemented to manage multiple platforms, technologies

(Pharaon internal and external onboarded via WP6 open calls), services and APIs. The goal is to create

a seamless user experience that enables co-creation across multiple platforms, technologies, and

technology providers.

Some of the aims of this task are to make possible the orchestration on multiple layers within Pharaon.

As the Pharaon pilot technologies have been selected within WP2 their connection is being established

within WP3 and initial analysis shows there will be no need to realize the fully automated orchestration

of all Pharaon input technologies. The amount of effort to be invested in such automated orchestration

would significantly surpass the more pragmatic approach towards facilitating the orchestration by

minimizing the redundancies, optimizing and streamlining repeating processes, offering good

documentation, code and actionable steps. Apart from that, the ability to monitor service-level

performance is high on the list of priorities.

The activities are directed in the definition of the right strategy and processes supported with the most

effective tools to facilitate the integration of reliable and high-quality experience across a distributed

Pharaon ecosystem.

The essential prerequisite of integration and orchestration is that the input solutions and services are

consumable. In this sense, the property of being compliant to standards, delivering what they promise

and being accessible is vital. The following figure (Figure 2.1) illustrates and summarizes not only

desirable but also in most situations, critical properties of the APIs that are to be integrated into the

Pharaon ecosystem. Since all web services are APIs the term" service orchestration" is also highly

related to "API orchestration" focusing on the act of integrating two or more APIs into a single offering.

1 https://www.advsyscon.com/blog/service-orchestration-automation/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

11

Figure 2.1 Properties of Pharaon APIs

The functional aspect is in most cases predefined and made available with the selection of the input

technology solution, as it should be the case with reliability and standards compliance. Within WP4

and the task related to this deliverable, the goal is to advance the later properties such as

documentation (vital to make the integration possible), findability (to make the address such as URL

of the API explicit) and accessibility (to make the process and all needed information such as

authorization, explicit to be able to connect to the API and consume its functionality).

Pharaon API

Functional

Reliable

Compliant to
standards

Documented

Discoverable
/findable

Accessible

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

12

3 REST API documentation

3.1 RESTful APIs

API (Application Programming Interface) allows the two applications (or services) to interact using a

defined set of rules or commands. On the web, apart from the main APIs, there are also web service

APIs that include SOAP (Simple Object Access Protocol), XML-RPC, JSON-RPC, REST (Representational

State Transfer). Unlike the former, REST is not a protocol but a set of architectural principles (software

architectural style) which uses a subset of HTTP and it is commonly used to create interactive

applications that use Web services. While REST is an "architecture style", RESTful is about putting that

style to practice and it typically refers to web services implementing such architecture.

REST APIs are a standardized architecture style for building web APIs using HTTP methods (Figure 3.1).

Figure 3.1 REST API [image taken from Seobility2]

When a RESTful API is called, the server will transfer a representation of the requested resource's state

(representation of the state can be in JSON, XML or HTML format) to the client system.

3.2 RESTful APIs description languages

RESTful (representational state transfer) API (application programming interface) DLs (description

languages) are formal languages designed to provide a (structured) description of RESTful web APIs.

Some examples include Web Services Description Language (WSDL), Web Application Description

Language (WADL), Open Data Protocol (OData), RESTful API Modeling Language (RAML)3, API

Blueprint4 and heavily adopted OpenAPI Specification.

The following figure shows the large adoption rate (82%) of the REST-based OpenAPI specification from

the State of API 2020 report56, based on responses from 1,500 API developers, architects, testers, and

product leads collected from May to June 2020.

2 https://www.seobility.net/en/wiki/REST_API
3 https://raml.org/
4 https://apiblueprint.org/
5 https://nordicapis.com/breaking-down-smartbears-2020-state-of-api-report/
6

https://www.seobility.net/en/wiki/REST_API

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

13

Figure 3.2 State of API 2020 Report7

3.3 OpenAPI Specification

The OpenAPI Specification (currently v3.0.3)8, formerly (2009-2017) known as the Swagger

Specification, is a specification for machine-readable interface files for describing, producing,

consuming, and visualizing RESTful web services.

Some benefits of using OpenAPI include:

• Language-agnostic interface for describing RESTful APIs,

• Machine-readable and easily interpretable by humans,

• Design first approach: whole API with types and examples for every endpoint can be defined

before the start of implementation work. With additional tools, mock-APIs can be generated

for testing until full implementation becomes available, thus speeding up the work and making

agreements explicit

• Code generators: most languages are supported by their code-generators

• Tooling: big ecosystem of tools created under the Swagger brand that can be used to

streamline the work (generating API documentation, tests, mock servers)

• Widely accepted: many developers and organization use it,

• Stable: known under Swagger name until 2017. OpenAPI Initiative is part of the Linux

Foundation, which increases trustworthiness,

7 https://smartbear.com/resources/ebooks/the-state-of-api-2020-report/
8 https://www.openapis.org, https://swagger.io/specification/, https://spec.openapis.org/oas/v3.0.3

https://smartbear.com/resources/ebooks/the-state-of-api-2020-report/
https://www.openapis.org/
https://swagger.io/specification/
https://spec.openapis.org/oas/v3.0.3

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

14

• Reliable single source of truth for APIs: clients and API developers/providers have a good point

of reference through the API contract which OpenAPI describes.

OpenAPI definitions can be written in JSON or in YAML (YAML Ain't Markup Language, as a superset of

JSON). An example of OpenAPI 3.0 definition in YAML is given in the following figure (Figure 3.3).

Figure 3.3 A sample OpenAPI 3.0 definition written in YAML [image from swagger.io9]

YAML and JSON are interchangeable as shown by the example in the following figure (Figure 3.4).

Figure 3.4 OpenAPI specification in YAML (left) and JSON (right)

3.4 OpenAPI tools

There are different tools around OpenAPI. The most notable Open Source are10:

• Swagger Editor11: open source editor to design, define and document RESTful APIs

• Swagger UI12: visualizes OpenAPI specification definition of RESTful APIs in an interactive UI.

Example of a Swagger for Petstore application can be found at following web link

https://petstore.swagger.io/#/ [last accessed 8 March 2021].

9 https://swagger.io/docs/specification/basic-structure/
10 https://swagger.io/docs/open-source-tools/
11 https://github.com/swagger-api/swagger-editor
12 https://github.com/swagger-api/swagger-ui

https://petstore.swagger.io/#/
https://swagger.io/docs/specification/basic-structure/
https://swagger.io/docs/open-source-tools/
https://github.com/swagger-api/swagger-editor

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

15

• Swagger Codegen13: open-source code-generator to build server stubs and client SDKs directly

from a Swagger defined RESTful API

One repository is https://openapi.tools/, where the tools are grouped into categories as14:

• Converters: tools to convert to and from OpenAPI and other API description formats.

• Data Validators: Check to see if API requests and responses are lining up with the API

description.

• Description Validators: Check if the API description is a valid OpenAPI.

• Documentation: Render API Description as HTML (or maybe a PDF) so slightly less technical

people can figure out how to work with the API.

• DSL: Writing YAML by hand is no fun, and maybe you don't want a GUI, so use a Domain Specific

Language to write OpenAPI in your language of choice.

• GUI Editors: Visual editors help you design APIs without needing to memorize the entire

OpenAPI specification.

• Learning: Whether you're trying to get documentation for a third party API based on traffic, or

are trying to switch to design-first at an organization with no OpenAPI at all, learning can help

you move your API spec forward and keep it up to date.

• Miscellaneous: Anything else that does stuff with OpenAPI but hasn't quite got enough to

warrant its own category.

• Mock Servers: Fake servers that take description documents as input, then route incoming HTTP

requests to example responses or dynamically generates examples.

• Parsers: Loads and read OpenAPI descriptions, so you can work with them programmatically.

• SDK Generators: Generate code to give to consumers to help them avoid interacting at a HTTP

level.

• Security: By poking around your OpenAPI description, some tools can look out for attack vectors

you might not have noticed.

• Server Implementations: Easily create and implement resources and routes for your APIs.

• Testing: Quickly execute API requests and validate responses on the fly through command line

or GUI interfaces.

• Text Editors: Text editors give you visual feedback while you write OpenAPI, so you can see

what docs might look like.

13 https://github.com/swagger-api/swagger-codegen
14 Open.API tools: https://openapi.tools/ [Accessed 10.2.2021]

https://openapi.tools/
https://openapi.tools/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

16

3.5 OpenAPI in Pharaon

Initial considerations on the process of applying OpenAPI in Pharaon is described in Developers

Handbook (served as a wiki at https://gitlab.com/pharaongroup/developers-handbook and described

in D4.1).

The concrete application of the OpenAPI for initial Pharaon input technologies is done and screenshots

are shown in the following figures (Figure 3.5, Figure 3.6). They are served from ENT private cloud

server used as a development environment.

Figure 3.5 OpenAPI UI for ThingsBoard (used in Slovenian and Italian pilot)

https://gitlab.com/pharaongroup/developers-handbook

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

17

Figure 3.6 OpenAPI UI for SmartHabits (used in Slovenian and Italian pilots)

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

18

4 Container orchestration tools

4.1 Containers and container orchestration

Unlike virtual machines, which virtualize hardware, containers virtualize operating systems (CPU,

memory, storage, and network resources at the OS-level) and are more portable and resource-efficient

(Figure 4.1).

Notable benefits of using containers include:

• process, memory, filesystem isolation,

• horizontal elasticity,

• increased portability: on different operating systems and platforms,

• greater efficiency: quicker to be deployed, scaled,

• less overhead: lighter than virtual machines as they do not include operating system images,

• more appropriate for DevSecOps and CI/CD: they run the same regardless of where they are

deployed and accelerate development, test and production cycles by having all dependencies

packaged together, thus being very popular with microservices architectures,

Figure 4.1 Containers vs. Virtual Machines [image taken from15]

Docker is the most popular open platform for developing, shipping, and running applications. Docker

provides the ability to "package and run an application in a loosely isolated environment called a

container"16. Docker uses client-server architecture (Figure 4.2), where the client talks to the Docker

daemon (responsible for building, running, and distributing Docker containers). A container image is

a read-only blueprint (template) for building Docker containers stored in a Docker registry

(DockerHub17 as a public registry is being hosted on a public cloud). The container is a runnable

instance of an image.

15 https://www.docker.com/resources/what-container
16 https://docs.docker.com/get-started/overview/
17 https://hub.docker.com/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

19

Figure 4.2 Docker architecture [image taken from 18]

Container orchestration focuses on managing the lifecycles of containers. Including provisioning and

deployment, scaling, allocation of resources between containers, load balancing, secure

communication between containers, health monitoring of containers and hosts on which containers

run, etc.

18 https://docs.docker.com/get-started/overview/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

20

4.2 Kubernetes and Pharaon

Kubernetes19 (a.k.a. k8s), as an open-source orchestration tool for containerized services, aims to

manage a cluster of hosts on which containers are deployed, monitored and scaled.

The following figure (Figure 4.3) shows a k8s cluster consisting of a set or worker machines (nodes)

that run containerized applications. Control Plane manages worker nodes and makes a global decision

about the cluster.

Figure 4.3 Diagram of a Kubernetes cluster [image taken from official documentation20]

Kubernetes features include automated rollouts and rollbacks, service discovery and load balancing,

storage orchestration, self-healing, secret and configuration management.

The following table (Table 4.1) gives some considerations (as pros as cons) on using k8s in Pharaon.

Table 4.1 Using k8s in Pharaon

Pros Cons

• Improved deployment

• Having infrastructure as data: All the
resources in Kubernetes (including Pods,
Configurations, Deployments,
Volumes…), can be expressed in a simple
YAML file

• Possibility to keep K8S YAML files in Git
repositories and to use GitOps (Git
Operations Version Control) to increase
transparency, avoid ambiguity

• Scalability becomes easier

• A steep learning curve, vast ecosystem,
a huge number of 3rd party providers

• k8s manages only containers, not the
VMs running them so VM maintenance,
cloud load balancers, storage still needs
to be done regardless of using k8s

• Not all Pharaon input technologies are
containerized and wrapping them into
containers may involve a lot of effort, an
effort that should primarily be spent on
Pharaon integration work (focusing
largely on integration via web APIs)

19 https://kubernetes.io/
20 https://kubernetes.io/docs/concepts/overview/components/

https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/components/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

21

• Security enforcement becomes easier
(using tools such as conftest21 allowing
writing tests for k8s configurations r
Open Policy Agent22 to check security
policies)

• Easy integration with different cloud
providers

• many Pharaon input technologies
already run on private servers or will be
deployed via different cloud providers.
Pharaon pilot sites will have different
deployment architectures and will
include a combination of public, private
and hybrid cloud infrastructure
environments.

• Most of the Pharaon participants do not
have experience with k8s, which may
lead to bottleneck problems and delays
if using k8s across all pilot sites

• Managed k8s solutions give more out of
the box but also requires careful analysis
of the possible best-fit for Pharaon

4.3 Docker Swarm and Pharaon

Docker Swarm23, as an open-source container orchestration platform, is more lightweight than k8s.

Docker Swarm turns a set of Docker hosts into a virtual, single host. It is a more straightforward

solution but also easier to learn and quicker to start with.

With easier setup, Docker Swarm could be a good fit for a Pharaon technology provider giving more

control and easier running of different Docker containers. All technology providers and developers

within Pharaon will decide whether to use some tool or not, and no tool will be enforced.

21 https://www.conftest.dev/
22 https://www.openpolicyagent.org/
23 https://docs.docker.com/get-started/swarm-deploy/

https://www.conftest.dev/
https://www.openpolicyagent.org/
https://docs.docker.com/get-started/swarm-deploy/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

22

5 Monitoring Orchestration Tools

Monitoring tools are needed to orchestrate data from various sources. For this specific use case,

Prometheus and Grafana are an established solution to orchestrate data from different sources and to

monitor them consistently. The following subsections provide more details about Prometheus and

Grafana.

5.1 Data analysis with Prometheus

Prometheus is reliable open-source monitoring and alerting tool that currently has a very active

developer and user community. This enables the consortium to have a continuous stable version that

can be worked with. Prometheus scrapes data from different sources and records them as numeric

time-series data. The recorded real-time metrics can then be queried from the internal time-series

database by applications via HTTP and enables real-time alerts. In addition to that, Prometheus offers

also

▪ Queries with an own query language, PromQL (Prometheus Query Language), which can be

used to select and aggregate data. PromQL has been specially adapted to the convention with

a time-series database and offers time-related queries.

▪ Visualization nodes that enable to visualize data via a built-in expression browser and/ or a

Grafana integration

▪ Time-Series storage in an efficient custom format

▪ Alerting based on PromQL to provide notifications for alerts, etc.

▪ Many existing integrations of exporters that are needed to analyse data.

▪ Extensions, such as custom alert managers, visualisation tools, microservice support, etc.

A Prometheus server is standalone, which is not depending on network storage or other remote

services. For developers, it supports a broad range of client libraries for all common programming

languages (official and unofficial).

https://github.com/prometheus

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

23

Figure 5.1: Prometheus architecture [image from24]

5.2 Data Visualisation with Grafana

Prometheus is fundamentally not intended as a dashboarding solution. Through the integration of

Grafana, specific queries can be displayed graphically and compiled into dashboards. Grafana is a

multi-platform open-source web application to visualize data from different data sources in charts,

graphs, etc. (see Figure 5.2). It must be connected to a data source, such as Prometheus (see Section

5.1) and can be configured to intended needs. Grafana provides a broad range of functionality to

handle data differently. It allows exploring data in different ways, e.g., through ad-hoc queries and

dynamic drilldowns. Views can individually be split to get an optimized view, different time ranges can

be compared separately, and data sources can be mixed to compare the data in the same graph. Out

of these customizable possibilities, thresholds can be defined to notify the user for alerts as soon as

the threshold has been met. Grafana has built-in support for Prometheus, which includes:

▪ a query editor with metric name lookup

▪ templating queries for generic dashboards

▪ alias patterns for short, readable series names

There are also existing a broad range of plugins for Grafana that offers GUI panels, additional data

sources, etc.

24 https://www.programmersought.com/article/16474076685/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

24

Figure 5.2: Grafana example

5.3 Monitoring and Pharaon

Pros Cons

• Prometheus is containerized standalone
toolkit, that is not dependent on other
microservices.

• This technology is mainly based on web
requests, that supports both
containerized microservices and
webservices.

• A customizable toolkit to analyze data in
various ways fits to all Pharaon pilots

• The use of time-series data in
Prometheus fits to the health records
and other data that are used in Pharaon.

• Both Prometheus, as well as Grafana,
are highly extendable with plugins,
which allows to use established third-
party developments instead of new
developments.

• The required query language PromQL is
very specific, that must be learned to
handle data scrapers.

• Most of the Pharaon participants do not
have experience with this technology
which may lead to bottleneck problems
and delays if using Prometheus and
Grafana across all pilot sites.

• The Prometheus server must fetch its
own measurement data from the
various servers. Time points must be
defined by the participants themselves.

• Additional Plugin solutions give more
out of the box but also requires careful
analysis of the possible best-fit for
Pharaon

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

25

6 Policy-based control for cloud native environments

6.1 Open Policy Agent (OPA)

OPA is an open-source, general-purpose policy engine that helps us to implement policies as code using

high-level declarative language Rego that resembles JavaScript (and is inspired by old query language

Datalog).

OPA decouples policy decision-making from policy enforcement. When your software needs to make

policy decisions it queries OPA and supplies structured data (e.g., JSON) as input. OPA generates policy

decisions by evaluating the query input and against policies and data. OPA and Rego are domain-

agnostic so you can describe almost any kind of invariant in your policies25.

Figure 6.1 OPA overview [image from OPA documentation26]

OPA REST API exposes endpoints for managing (adding, removing, modifying) policy modules.

Some of the organizations that adoped OPA are Netflix (to control access to its internal APIs), Chef (for

IAM capabilities), Pinterest, Goldman Sacks etc.

6.2 OPA and Pharaon

Since OPA exposes domain-agnostic APIs, Pharaon services cloud them to manage and enforce

different policies. OPA will be further analyzed to see if and where it could be best applied within

Pharaon. OPA policy example for Pharaon is shown in the following figure (Figure 6.2).

25 https://www.openpolicyagent.org/docs/latest/
26 https://www.openpolicyagent.org/docs/latest/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

26

package authz

allow {

 input.path == ["users"]

 input.method == "POST"

}

allow {

 some pharaon_profile_id

 input.path = ["users", pharaon_profile_id]

 input.method == "GET"

 pharaon_profile_id == input.user_id

}

Figure 6.2 OPA policy example for Pharaon

6.2.1 Benefits of using OPA in Pharaon

Both security and compliance are high on the list of Pharaon priorities. Placing access controls

throughout Pharaon infrastructure, systems and services comes at a cost of overhead which can

degrade the performance and ultimately impact the customer (end user) experience. Common

solutions in enterprises are LDAP/AD (Lightweight Directory Access Protocol/Active Directory) used for

the authentication and authorization of every request across organization. Such setup only provides

data but not the decision-making using that data meaning that every service or application still has to

code the decision making logic.

OPA allows "security policy as a code" validations that evaluate the data in the context of different

organization's security and compliance policies, which means that different Pharaon pilots residing in

different countries can have their own policies. The benefit of externalizing such concerns from the

application allows managing the security in more generic way.

OPA can be used with k8s, access control across Pharaon services, policy driven CI/CD pipelines.

6.2.2 JWT tokens and OPA

OpenAPIs in Pharaon (described in 0) are secured with JSON Web Tokens (JWTs) (as described in

Pharaon deliverable D3.6) and Pharaon JWTs could be given to OPA and use OPA specialized support

for JWTs to extract the information needed to make a policy decision as shown in the following figure

(Figure 6.3).

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

27

Figure 6.3 JSON Web Token flow [image from OPA documentation27]

6.2.3 Using OPA with Docker

Finer access control using OPA can be done via Docker plugin infrastructure28 (using opa-docker-authz

plugin29). Since Docker is used in Pharaon OPA can help here as well.

6.2.4 Evaluation of policies via REST API

For evaluation of policies there are different ways, one being REST APIs that return JSON over HTTP.

6.2.5 Collecting status reports

OPA can periodically report status updates to remote HTTP servers30.

6.2.6 Collecting log of policy decisions

OPA can periodically report decision logs to remote HTTP servers via gzip compressed JSON array as

shown in following figure (Figure 6.4) where each array element (event) represents a policy decision.

Sensitive data (such as passwords) can be masked by OPA masking policy.

27 https://www.openpolicyagent.org/docs/latest/external-data/
28 https://www.openpolicyagent.org/docs/v0.11.0/docker-authorization/
29 https://github.com/open-policy-agent/opa-docker-authz
30 https://www.openpolicyagent.org/docs/latest/management/#status

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

28

Figure 6.4 OPA decision log [image from OPA documentation31]

6.2.7 Health API

OPA Health API endpoint can be executed to verify that the OPA Pharaon server is operational.

6.2.8 Prometheus API

The Prometheus (usage in Pharaon explained in 5.1) endpoint is enabled by default OPA is run as a

server. OPA exposes an HTTP endpoint that can be used to collect performance metrics for all API calls.

To enable metric collection from OPA the prometheus.yml config has to be set:

global:

 scrape_interval: 15s

scrape_configs:

 - job_name: "opa"

 metrics_path: "/metrics"

 static_configs:

 - targets:

 - "localhost:8181"

31 https://www.openpolicyagent.org/docs/latest/external-data/

 D4.4 Service orchestration support tools - first

© 2020 PHArA-ON Horizon 2020 | DT-TDS-01-2019 | 857188

29

6.2.9 Editor and IDE support

OPA can be integrated into different IDEs and editors32, including The VSCode

(https://code.visualstudio.com/) selected to be used in Pharaon, where it gives a plugin to develop,

test, debug and analyze policies for the Open Policy Agent (available at

https://marketplace.visualstudio.com/items?itemName=tsandall.opa).

Rego playground is available at the following web link: https://play.openpolicyagent.org/

7 Conclusions

This deliverable reports on the initial considerations and work done concerning service orchestration

in Pharaon. As more and more information is being gathered from technology partners providing the

pilots' technologies, more knowledge is gained that will be used for the planning of activities. Special

consideration related to the Pharaon ecosystem, concrete architectures of the Pharaon six pilots,

deployment architectures, ownership of the cloud environments and access to the infrastructure are

also being analyzed as the project evolves. All input information is continuously being analyzed in order

to understand the needs better and ultimately where the most added value can be delivered. In such

analysis, not only the technology but also business aspects, including restricted access to some

resources and infrastructure from technology providers (Pharaon partners) is being taken into account.

With all this in mind, and considering the limited resources available, the contributions, tools and

approaches with the highest potential are and will be prioritized.

32 https://www.openpolicyagent.org/docs/latest/editor-and-ide-support/

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=tsandall.opa
https://play.openpolicyagent.org/

